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In this paper, the two methods for finding rational general solutions of first-order
algebraic ODEs introduced in Ngô andWinkler [15, 17, 16] and Vo, Grasegger
andWinkler [22] are compared. Common to those methods is that both assign
some algebraic set to an ODE. Provided the assigned algebraic sets are suitably
parametrisable, the initial ODE can be reduced to a more fundamental (set of)
differential equation(s). Both approaches possess a common rational paramet-
risation in certain situations, in which case the corresponding derived differential
equation(s) are shown to coincide. Finally, a discussion on relations between
certain classes of first-order algebraic ODEs with respect to their rational general
solvability is provided.

1 Introduction

Recently, the algebro-geometric method for solving algebraic differential equations [24]—a
novel method for finding exact solutions of such differential equations—has evolved. Starting
with the work of Feng and Gao [7, 6], resulting in an algorithm for computing rational general
solutions of autonomous first-order algebraic ODEs, several generalisations of their method
have been proposed since. The idea for solving the autonomous casewas to assign an algebraic
curve to the ODE and derive a solution from a suitable parametrisation of this curve. An
illustration of the general approach can be found inWinkler [24]. In this paper, two extensions
of themethod of Feng andGao to non-autonomous algebraic ODEs of order one are discussed.
The first method was proposed by Ngô andWinkler [15, 17, 16] and starts by assigning an
algebraic surface to the differential equation. From a proper rational parametrisation of this
surface, they derive an associated system of autonomous quasi-linear differential equations
which is equal to the original ODE in terms of rational general solvability. A second method
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has been investigated by Vo, Grasegger andWinkler [22]. Their approach is to assign a curve
over a rational function field to an algebraic ODE. Given a suitable rational parametrisation
of this curve, they are able to reduce the original ODE to a single quasi-linear ODE. Again,
this transformation preserves rational general solvability. It is natural to ask how these
methods are connected and whether there are situations when the derived equations actually
coincide.

The structure of this paper is as follows: Section 2 introduces necessary preliminaries of
rational algebraic curves and surfaces and gives a precise definition of the term rational
general solution for first-order algebraic ODEs. Afterwards, the two methods for constructing
such solutions are outlined briefly in Section 3. Section 4 starts by proving that a suitable
parametrisation of the associated curve yields a proper rational parametrisation of the surface
associated to the same differential equation. The resulting surface parametrisation is of a
special form, generating a simpler associated differential system. At the end, a discussion on
relations between certain classes of algebraic ODEs of order one is provided. In particular, the
classes of ODEs solvable by the two approaches are related to the class of first-order algebraic
ODEs which have a rational general solution. Their relation is clarified for differential
equations which can be solved by both approaches or none of them. Only one open question
remains, cf. Section 5, which asks whether there are any algebraic ODEs solvable with the
method via surface-parametrisation, but not with the other approach.

2 Preliminaries

Throughout this paper, ℱ denotes an algebraically closed field of characteristic zero. The
polynomial ring ℱ[𝑥] and its quotient field ℱ(𝑥) can be seen as a differential ring and
a differential field, respectively, when endowed with the usual derivation d/d𝑥. In both
structures, ℱ is the field of constants. Frequently, the derivation d/d𝑥 is abbreviated by the
symbol ′. An algebraic ordinary differential equation (AODE) of order one is a differential
equation of the form

𝐴(𝑥, 𝑦, 𝑦′) = 0,

where𝐴 ∈ ℱ[𝑥, 𝑦, 𝑦′]⧵ℱ[𝑥, 𝑦] and 𝑦 is a differential indeterminate overℱ(𝑥). The polynomial
𝐴will be referred to as the defining polynomial of the AODE. For the purpose of constructing
general solutions of such AODEs, the defining polynomial may be taken to be irreducible
without loss of generality, which shall be assumed henceforth.

The notion of general solution of an AODE can bemade precise in the language of differential
algebra, cf. Ritt [18] and Kolchin [11] for an extensive treatise of the subject. Consider the
defining polynomial 𝐴 of a first-order AODE as an element of the differential polynomial
algebra ℱ(𝑥){𝑦} over the differential field (ℱ(𝑥), d/d𝑥). Notice that the irreducibility of 𝐴
is preserved when lifted to ℱ(𝑥){𝑦}. The radical differential ideal generated by 𝐴, usually
denoted by {𝐴}, can be decomposed into

{𝐴} = ({𝐴} ∶ 𝑆𝐴) ∩ {𝐴, 𝑆𝐴},

2



where 𝑆𝐴 = 𝜕𝐴/𝜕𝑦′ is the separant of 𝐴. It can be shown that the component ({𝐴} ∶ 𝑆𝐴) is a
prime differential ideal and as such has a generic zero1, cf. Ritt [18, Chapter 2] or Kolchin [11,
Chapter 4]. By a generic zero of a prime differential ideal 𝔭 ⊊ ℱ(𝑥){𝑦} one understands an
element 𝜂 in a universal differential extension field2 of ℱ(𝑥) whose defining ideal in ℱ(𝑥){𝑦}
is exactly 𝔭. In other words, a differential polynomial is in 𝔭 if and only if it vanishes at 𝜂.
The prime component ({𝐴} ∶ 𝑆𝐴) is characterised by the fact that it is the unique component
which does not contain the separant. Literature refers to it as the general component of 𝐴.

Definition 1. Given a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 with 𝐴 as its defining polynomial.
A general solution of such an AODE is a generic zero of the general component of 𝐴. If in
addition, a general solution ̂𝑦 is of the form

̂𝑦 =
𝑎𝑚 𝑥𝑚 + 𝑎𝑚−1 𝑥𝑚−1 +⋯+ 𝑎0
𝑏𝑛 𝑥𝑛 + 𝑏𝑛−1 𝑥𝑛−1 +⋯+ 𝑏0

,

where (𝑎𝑖)𝑖∈0..𝑚, (𝑏𝑗)𝑗∈0..𝑛 are constants in a universal differential extension field of ℱ(𝑥)with
𝑎𝑚, 𝑏𝑛 ≠ 0, then ̂𝑦 is called a rational general solution. �

A general solution of an AODE serves as test point for the ideal membership problem of the
general component. In order to verify whether a solution is indeed general one may use a
reduction process for differential polynomials analogous to Euclidean division of algebraic
polynomials. The precise reduction requires the introduction of differential rankings and
autoreduced sets which is beyond the scope of this paper. Details may be found in Kolchin
[11, Chapter 1, Section 8 and 9]. Consider the differential polynomial algebra ℛ = ℱ(𝑥){𝑦}
with the orderly ranking3 𝑦 < 𝑦′ < 𝑦″ < 𝑦‴ < ⋯ on the differential indeterminates over
ℱ(𝑥). Let 𝐴 ∈ ℛ ⧵ ℱ(𝑥) be a differential polynomial of order 𝑜 and denote by 𝑦(𝑜) the 𝑜-th
derivative of 𝑦. For every 𝐹 ∈ ℛ there exists a unique expression

𝐼𝜄𝐴 𝑆𝜍𝐴 𝐹 ≡ 𝑅 (mod [𝐴]), (1)

where 𝜄, 𝜎 ∈ ℕ and 𝑅 ∈ ℛ is reduced with respect to 𝐴. The expressions 𝐼𝐴 and 𝑆𝐴 denote the
initial and separant of 𝐴, respectively, viz. 𝐼𝐴 is the leading coefficient of 𝐴 when considered
as a univariate polynomial in the variable 𝑦(𝑜) and 𝑆𝐴 = 𝜕𝐴/𝜕𝑦(𝑜). Finally, [𝐴] ⊆ ℛ denotes the
differential ideal generated by 𝐴. The statement of Equation (1) can be sharpened as follows:
The difference 𝐼𝜄𝐴 𝑆𝜍𝐴 𝐹 − 𝑅 is expressible as an ℛ-linear combination of derivatives of 𝐴 [11,

1Kolchin [11] requires such prime differential ideals to be ℱ(𝑥)-separable in order to possess a generic zero.
This is always the case for the general component [11, Chapter 4, Section 6].

2Such a differential field, denote it by 𝒰, is characterised by the following property: Every prime differential
ideal 𝔭 ⊊ 𝒦{𝑦1, … , 𝑦𝑛} with 𝑛 > 0 and 𝒦 a finitely generated differential field extension of ℱ(𝑥) has a
generic zero whose elements can be taken in 𝒰. Alternatively, for every finitely generated differential field
extension of 𝒦 (not necessarily in 𝒰) there exists a𝒦-isomorphism to a differential subfield of 𝒰. Note that
such a universal extension exists for every differential field, cf. Kolchin [12, Chapter 1, Section 5].

3In short, a differential ranking is a total order on the indeterminates and their derivatives which is compatible
with the differential structure. Such a ranking is called orderly if derivatives of higher order are ranked higher.
There exists precisely one orderly ranking in the case of the ordinary differential polynomial algebraℱ(𝑥){𝑦},
justifying the term “the orderly ranking”. In fact, it is also the only differential ranking of this algebra.
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Proposition 1 in Chapter 1, Section 9]. Consequently, the congruence is of the subsequent
form:

𝐼𝜄𝐴 𝑆𝜍𝐴 𝐹 = ∑
𝑖≥0
(𝑄𝑖

d𝑖

d𝑥𝑖
𝐴) + 𝑅. (2)

Note that the factors 𝑄𝑖 ∈ ℛ are zero when the order of the 𝑖-th derivative of 𝐴 exceeds the
order of 𝐹. This identity motivates the following definition.

Definition 2. Given 𝐹, 𝐴 ∈ ℱ(𝑥){𝑦} such that 𝐴 is not an element of ℱ(𝑥). The differential
polynomial 𝑅 in Equation (2) is called the differential pseudo-remainder of 𝐹 by𝐴with respect
to the orderly ranking and is denoted by prem(𝐹, 𝐴). �

Differential pseudo-remainders provide another tool for deciding the ideal membership of
the general component of an AODE. Ritt [18, Chapter 2, Section 13] proved that a necessary
and sufficient condition for a differential polynomial to be in the general component of an
AODE is that the differential pseudo-remainder by the defining polynomial is zero. This
allows to give the subsequent alternative characterisation of a general solution.

Lemma 1. Let 𝐴 be the defining polynomial of an AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0. A solution ̂𝑦 is a
general solution if and only if

∀𝐹 ∈ ℱ(𝑥){𝑦} ∶ 𝐹( ̂𝑦) = 0 ⇔ prem(𝐹, 𝐴) = 0.

The methods for constructing explicit solutions of AODEs discussed in this paper involve
the association of certain algebraic sets to the initial differential equation. The following
paragraphs outline necessary concepts of rational algebraic curves and surfaces. For a general
overview, consult for instance Shafarevich [21], Walker [23] or Hartshorne [10, Chapters 1, 4,
5]. Details on rational curves and the computation of rational parametrisations thereof can
be found in Sendra, Winkler and Pérez-Dı́az [20]. For parametrisation methods of rational
surfaces consult Schicho [19].

Consider now a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 with defining polynomial 𝐴 ∈ ℱ[𝑥, 𝑦, 𝑦′].
Substitution of an arbitrary new variable, say 𝑧, for the differential variable 𝑦′ turns the
differential equation into a purely algebraic problem, viz. the differential polynomial into an
algebraic polynomial. The latter shall be denoted by𝐴𝑦′→𝑧. In this setting, the set of solutions
of the algebraic problem constitutes a classical algebraic set. In fact, there are two natural
choices on how to interpret the corresponding algebraic polynomial and, to that effect, in
which space solutions are to be considered:

1. View 𝐴𝑦′→𝑧 ∈ ℱ[𝑥, 𝑦, 𝑧], defining a surface in three-dimensional affine space over ℱ:

𝒮𝐴 ≔ { (𝑥, 𝑦, 𝑧) ∈ 𝔸3(ℱ) || 𝐴𝑦′→𝑧(𝑥, 𝑦, 𝑧) = 0 }. (3)

2. View 𝐴𝑦′→𝑧 ∈ ℱ(𝑥)[𝑦, 𝑧], defining a curve in two-dimensional affine space over ℱ(𝑥),
the latter denoting the algebraic closure of ℱ(𝑥):

𝒞𝐴 ≔ { (𝑦, 𝑧) ∈ 𝔸2(ℱ(𝑥)) || 𝐴𝑦′→𝑧(𝑦, 𝑧) = 0 }. (4)
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Definition 3. Given a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 and let 𝒮𝐴/𝒞𝐴 be the algebraic sur-
face/curve from Equation (3)/(4), respectively. Then 𝒮𝐴 is called the associated surface and
𝒞𝐴 the associated curve of the AODE. �

The antecedent algebraic sets are implicitly described by the vanishing set of a single polyno-
mial. For the purpose of constructing solutions of the original AODE, however, an explicit
characterisation is needed. From now on only irreducible algebraic sets are considered. Such
sets are known as algebraic varieties.

Definition 4. Let 𝒳 ⊆ 𝔸𝑛(ℱ) be an algebraic variety and ℱ(𝑡1, … , 𝑡𝑑) be the field of rational
functions in 𝑑 variables over ℱ. A rational map 𝒫𝒳 ∶ 𝔸𝑑(ℱ) → 𝒳 given by an 𝑛-tuple of
rational functions (𝜑1, … , 𝜑𝑛) with (𝜑𝑖)𝑖∈1..𝑛 ∈ ℱ(𝑡1, … , 𝑡𝑑) is called a rational parametrisa-
tion of 𝒳 if im(𝒫𝒳) is Zariski-dense in 𝒳. Furthermore, if 𝒫𝒳 has a rational inverse, i.e. a
rational map 𝒫−1

𝒳 ∶ 𝒳 → 𝔸𝑑(ℱ) such that 𝒫−1
𝒳 ∘ 𝒫𝒳 = id𝔸𝑑(ℱ) and 𝒫𝒳 ∘ 𝒫−1

𝒳 = id𝒳, then the
parametrisation is called proper4. �

Irreducible algebraic curves and surfaces over an algebraically closed field of characteristic
zero always have a proper rational parametrisation if they are rationally parametrisable.
Should an algebraic variety possess a proper rational parametrisation then it is also called a
rational variety. Notice that the associated surface of a first-order AODE is a variety since the
defining polynomial is assumed to be irreducible. On the other hand, the associated curve
might fail to be a variety and the defining polynomial of the curve factors over the algebraic
closure of ℱ(𝑥). With the intention of parametrising this curve, the reducible case can be
dismissed as only irreducible curves may possess a (proper) rational parametrisation [20,
Theorem 4.4]. The following theorem provides a simple rationality criterion for the varieties
considered in this paper.

Theorem1. An irreducible curve𝒞 ⊆ 𝔸2(ℱ) is rational if and only if its genus is zero. Similarly,
an irreducible surface 𝒮 ⊆ 𝔸3(ℱ) is rational if and only if both its arithmetic genus and second
plurigenus are zero.

A precise definition of those notions can be found in Hartshorne [10]. The subsequent
theorem concludes this preliminary section by providing a well-known link between rational
varieties and field extensions.

Theorem 2. Consider an algebraic variety𝒳 ⊆ 𝔸𝑛(ℱ) and letℱ(𝒳) denote its function field.
Then the following conditions are equivalent:

(i) There exists a proper rational parametrisation 𝒫𝒳 ∶ 𝔸𝑑(ℱ) → 𝒳.

(ii) ℱ(𝒳) is isomorphic toℱ(𝑡1, … , 𝑡𝑑) overℱ, whereℱ(𝑡1, … , 𝑡𝑑) denotes the field of rational
functions in 𝑑 variables overℱ.

4Equality of the maps should be understood in the sense that they are equal as rational maps, i.e. they agree on
an open subset on which both sides of the equation are defined.
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In fact, every proper rational parametrisation gives rise to a suitable isomorphism of the
function fields via the induced pullback mapping on rational functions and every such iso-
morphism, constant on elements of the ground field ℱ, yields a proper rational parametrisa-
tion when applied to the coordinate functions of the variety. Observe that the transcendence
degree 𝑑 of the rational function field is one/two in the case of rational curves/surfaces,
respectively.

3 Computational methods for parametrisable AODEs

The purpose of this section is to outline two recent methods for explicitly constructing
rational general solutions of first-order AODEs whose associated surface/curve is rational.
Over a suitable computable field—such as the algebraic numbers ℚ—these methods lead to
algorithms which can be implemented in a computer algebra system.

Throughout this section, the algebraically closed field of characteristic zero ℱ shall be fixed.
Recall from the previous section that the defining polynomial of any first-order AODE is
assumed to be irreducible and of positive degree in 𝑦′.

Definition 5. The class of all first-order AODEs is denoted by 𝐀𝑂𝐷𝐸. Furthermore, 𝐀
(𝑅𝐺𝑆)
𝑂𝐷𝐸

stands for the proper subclass of those AODEs which have a rational general solution. �

In terms of solvability, any first-order ODE which is polynomial in 𝑦 and 𝑦′, but rational in
the variable 𝑥 can be transformed into a suitable AODE. More elaborate, let 𝐹(𝑥, 𝑦, 𝑦′) = 0
be an ODE such that the left-hand side is an irreducible element

𝐹 =
𝐷

∑
𝑖=0

𝑖

∑
𝑗=0

𝑛𝑖𝑗
𝑑𝑖𝑗

𝑦𝑖−𝑗(𝑦′)𝑗 ∈ ℱ(𝑥)[𝑦, 𝑦′] ⧵ ℱ(𝑥)[𝑦]

with 𝐷 ∈ ℕ and 𝑛𝑖𝑗, 𝑑𝑖𝑗 ∈ ℱ[𝑥]. Consider the polynomial

𝐴𝐹 = ppℱ[𝑥]
⎛
⎜⎜
⎝

∏
0≤𝑖≤𝐷
0≤𝑗≤𝑖

(𝑑𝑖𝑗) ⋅ 𝐹
⎞
⎟⎟
⎠

∈ ℱ[𝑥][𝑦, 𝑦′], (5)

where ppℱ[𝑥] extracts the primitive part
5 overℱ[𝑥]. In other words, the argument, considered

as a bivariate polynomial in ℱ[𝑥][𝑦, 𝑦′], is divided by the greatest common divisor of its
coefficients. The differential polynomial 𝐴𝐹 has the same general solution as 𝐹, because they
differ by a mere unit as elements of ℱ(𝑥){𝑦}. Furthermore, 𝐴𝐹 is irreducible in ℱ[𝑥, 𝑦, 𝑦′]
and can be considered as the defining polynomial of an AODE.

5The primitive part operation is necessary, even when the fractions are normalised and the denominators are
cleared bymultiplying with their least commonmultiple. For example, 𝑥(𝑦′−𝑦) is irreducible inℱ(𝑥)[𝑦, 𝑦′],
since 𝑥 is a unit in this ring, but reducible as an element of ℱ[𝑥, 𝑦, 𝑦′].
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3.1 Surface-parametrisable AODEs

The content of this section is based on the work of Ngô and Winkler [15]. A pleasantly
readable summary of this method, especially when it comes to solving the later introduced
associated planar system, can be found in Ngô andWinkler [16].

Definition 6. Consider a first-order AODE with associated surface 𝒮𝐴. Such an AODE is
called surface-parametrisable if and only if 𝒮𝐴 is a rational surface. The class of all surface-
parametrisable AODEs is denoted by 𝐀(𝑆𝑃)𝑂𝐷𝐸. �

Let 𝒫𝒮𝐴(𝑡1, 𝑡2) = (𝜑1(𝑡1, 𝑡2), 𝜑2(𝑡1, 𝑡2), 𝜑3(𝑡1, 𝑡2)), where 𝜑1, 𝜑2, 𝜑3 ∈ ℱ(𝑡1, 𝑡2), be a proper ra-
tional parametrisation of the surface 𝒮𝐴 associated to the first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0.
Furthermore, assume this AODE has a rational general solution ̂𝑦. Consequently, such a
solution must annihilate the defining polynomial, viz. 𝐴(𝑥, ̂𝑦, ̂𝑦′) = 0, and hence give rise to
a family6 of parametric curves (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)) over ℱ located on the associated surface 𝒮𝐴.
Now consider (𝑠(𝑥), 𝑡(𝑥)) = 𝒫−1

𝒮𝐴 (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)), i.e. the image of (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)) under the
birational inverse of 𝒫𝒮𝐴. Application of 𝒫𝒮𝐴 on this image yields conditions on 𝑠(𝑥) and 𝑡(𝑥)

{
𝜑1(𝑠(𝑥), 𝑡(𝑥)) = 𝑥
𝜑3(𝑠(𝑥), 𝑡(𝑥)) = 𝜑2(𝑠(𝑥), 𝑡(𝑥))

′,

since 𝒫𝒮𝐴(𝑠(𝑥), 𝑡(𝑥)) = (𝑥, ̂𝑦(𝑥), ̂𝑦′(𝑥)). Note that these maps are well-defined if ̂𝑦 is a rational
general solution. By using the chain rule on the second equation while differentiating the
first equation results in a linear system in 𝑠′(𝑥) and 𝑡′(𝑥). A solution for the latter is of the
form

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑠′ =
𝜑3(𝑠, 𝑡)

𝜕𝜑1(𝑠,𝑡)
𝜕𝑡

− 𝜕𝜑2(𝑠,𝑡)
𝜕𝑡

𝜕𝜑1(𝑠,𝑡)
𝜕𝑡

𝜕𝜑2(𝑠,𝑡)
𝜕𝑠

− 𝜕𝜑1(𝑠,𝑡)
𝜕𝑠

𝜕𝜑2(𝑠,𝑡)
𝜕𝑡

𝑡′ =
𝜑3(𝑠, 𝑡)

𝜕𝜑1(𝑠,𝑡)
𝜕𝑠

− 𝜕𝜑2(𝑠,𝑡)
𝜕𝑠

𝜕𝜑1(𝑠,𝑡)
𝜕𝑠

𝜕𝜑2(𝑠,𝑡)
𝜕𝑡

− 𝜕𝜑1(𝑠,𝑡)
𝜕𝑡

𝜕𝜑2(𝑠,𝑡)
𝜕𝑠

,

(6)

where the parametric dependency on 𝑥 is omitted for the sake of brevity. It should be
mentioned that the denominators do not vanish for arbitrary variables 𝑠, 𝑡 and neither when
these are substituted by values 𝑠(𝑥), 𝑡(𝑥) which correspond to a rational general solution of
the original AODE [16].

Definition 7. Let𝐴(𝑥, 𝑦, 𝑦′) = 0 be a surface-parametrisable first-order AODE and𝒫𝒮𝐴(𝑠, 𝑡) =
(𝜑1(𝑠, 𝑡), 𝜑2(𝑠, 𝑡), 𝜑3(𝑠, 𝑡)) be a proper rational parametrisation of the associated surface with
𝜑1, 𝜑2, 𝜑3 ∈ ℱ(𝑠, 𝑡). For this AODE, the autonomous system of differential equations (6) is
called the associated planar system with respect to 𝒫𝒮𝐴. �

6By necessity, any rational general solution contains a transcendental constant which may be specialised to
a value of the ground field ℱ. Every such specialisation yields a particular rational solution of the AODE
which in turn can be considered as a rational map depending on the parameter 𝑥.
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This construction transforms a general (non-linear) first-order AODE into an autonomous
system of quasi-linear ODEs of the same order. Furthermore, by the remark preceding
Definition 7 and the results in Ngô andWinkler [15, Theorem 3.14 and Theorem 3.15] the
subsequent theorem follows immediately.

Theorem 3. If 𝐴(𝑥, 𝑦, 𝑦′) = 0 is a surface-parametrisable AODE of order one and 𝒫𝒮𝐴 a proper
rational parametrisation of the associated surface, then there is a one-to-one correspondence
between rational general solutions of this AODE and the rational general solutions of the
associated planar system with respect to 𝒫𝒮𝐴.

Unsurprisingly, this one-to-one correspondence is realised via the rational parametrisation
and its birational inverse. One direction is of special interest: Given a rational general
solution ( ̂𝑠(𝑥), ̂𝑡(𝑥)) of the associated planar system with respect to the parametrisation
𝒫𝒮𝐴(𝑡1, 𝑡2) = (𝜑1(𝑡1, 𝑡2), 𝜑2(𝑡1, 𝑡2), 𝜑3(𝑡1, 𝑡2)), then

̂𝑦 = 𝜑2( ̂𝑠(𝑥 − 𝐶), ̂𝑡(𝑥 − 𝐶)), (7)

where 𝐶 = 𝜑1( ̂𝑠(𝑥), ̂𝑡(𝑥)) − 𝑥, is a rational general solution of the original AODE [15, The-
orem 3.15]. It is imperative to define what a general solution of a planar system is in order to
make this correspondence precise. Consider the ordinary differential polynomial algebra
𝒫 = ℱ(𝑥){𝑠, 𝑡} over (ℱ(𝑥), d/d𝑥). Let 𝑠(𝑖) and 𝑡(𝑗) denote the 𝑖-th and 𝑗-th derivative of 𝑠 and 𝑡,
respectively, and define the orderly ranking [15, Definition 2.2]

⎧
⎪

⎨
⎪
⎩

𝑠(𝑖) < 𝑠(𝑗) if 𝑖 < 𝑗
𝑡(𝑖) < 𝑡(𝑗) if 𝑖 < 𝑗
𝑠(𝑖) < 𝑡(𝑗) if 𝑖 < 𝑗
𝑡(𝑖) < 𝑠(𝑗) if 𝑖 ≤ 𝑗.

This ranking is a direct generalisation of the orderly ranking of a single differential indeterm-
inate, cf. Section 2. From a normalised autonomous planar system

⎧

⎨
⎩

𝑠′ =
𝑁𝑠
𝐷𝑠

𝑡′ =
𝑁𝑡
𝐷𝑡
,

(8)

where 𝑁𝑠, 𝐷𝑠, 𝑁𝑡, 𝐷𝑡 ∈ ℱ[𝑠, 𝑡] such that 𝐷𝑠, 𝐷𝑡 ≠ 0, one obtains two quasi-linear AODEs by
clearing denominators. Let 𝐴1 = 𝐷𝑠 𝑠′ − 𝑁𝑠, 𝐴2 = 𝐷𝑡 𝑡′ − 𝑁𝑡 and notice that they constitute
an autoreduced set {𝐴1, 𝐴2} with respect to the chosen ranking. Analogous to the approach
in the preceding section, every differential polynomial 𝐹 ∈ 𝒫 has a unique representation of
the form [15, Section 3]

𝐷𝜍
𝑠 𝐷𝜏

𝑡 𝐹 = ∑
𝑖≥0
(𝑄1𝑖

d𝑖

d𝑥𝑖
𝐴1) + ∑

𝑗≥0
(𝑄2𝑗

d𝑗

d𝑥𝑗
𝐴2) + 𝑅, (9)
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with 𝜎, 𝜏 ∈ ℕ, 𝑄1𝑖, 𝑄2𝑗 ∈ 𝒫 and 𝑅 is reduced with respect to {𝐴1, 𝐴2}. Once again, the
differential polynomial 𝑅 in Equation (9) is called the differential pseudo-remainder of 𝐹
by {𝐴1, 𝐴2} and is denoted by prem(𝐹, 𝐴1, 𝐴2). Now, a general solution of the planar system
is defined as follows [15, Definition 3.9]. Notice that the differential polynomials with
pseudo-remainder zero indeed form a prime ideal [15, Lemma 3.8].

Definition 8. Consider the planar system from Equation (8). A solution ( ̂𝑠(𝑥), ̂𝑡(𝑥)) of this
system is a general solution if and only if

∀𝐹 ∈ ℱ(𝑥){𝑠, 𝑡} ∶ 𝐹( ̂𝑠(𝑥), ̂𝑡(𝑥)) = 0 ⇔ prem(𝐹, 𝐷𝑠 𝑠′ − 𝑁𝑠, 𝐷𝑡 𝑡′ − 𝑁𝑡) = 0,

where the differential pseudo-remainder is the polynomial 𝑅 in Equation (9). Furthermore,
if both ̂𝑠(𝑥) and ̂𝑡(𝑥) of a general solution are rational in 𝑥, then it is called a rational general
solution of the planar system. �

The significant benefit in reducing an AODE to a planar rational system lies in the existence
of computational methods for finding rational general solutions of these systems. One such
method has been investigated in Ngô andWinkler [17]. Here the authors show that rational
general solutions of the associated planar system are intrinsically tied to a certain subclass of
so-called rational first integrals of such systems [17, Theorem 5.6]. Rational first integrals
of planar rational systems have received a lot of attention in the literature. A selection of
recent publications with specific emphasis on the computation of such integrals may be
found in [2, 5, 8]. The proposed algorithm of Ngô andWinkler computes a rational general
solution—that is, if such an object exists—provided a degree bound for rational first integrals
of the associated planar system is given. Upper bounds are known in the generic situation [3]
and in this case their method is actually a decision algorithm. Finally, it is worth mentioning
that the rational general solvability is independent of which proper rational parametrisation
of the associated surface is used [16, Section 2.3].

3.2 Curve-parametrisable AODEs

The approach of this method shall be outlined up to the point—and at the same level of
generality—as was done for the preceding method in Section 3.1. A complete derivation
where all details are fleshed out is described in Vo, Grasegger andWinkler [22].

Definition 9. Given a first-order AODE with associated curve 𝒞𝐴. Such an AODE is called
curve-parametrisable if and only if 𝒞𝐴 is a rational curve. The class of all curve-parametrisable
AODEs is denoted by 𝐀(𝐶𝑃)𝑂𝐷𝐸. �

Recall that the associated curve of a first-order AODE is defined overℱ(𝑥), i.e. all coefficients
of the defining polynomial of 𝒞𝐴 are contained in this field. In general, one can not hope to
find a rational parametrisation of a rational plane curve over the curve’s field of definition
[20, Corollary 5.9]. Of course, such a case can occur only if the field in question is not
algebraically closed. The following proposition ensures that curve-parametrisable AODEs
always possess proper rational parametrisations over ℱ(𝑥).

9



Proposition 1 ([22, Theorem 4.3]). Every rational curve 𝒞 ⊆ 𝔸2(ℱ(𝑥)) defined overℱ(𝑥) has
a proper rational parametrisation 𝒫𝒞(𝑡) = (𝜓1(𝑡), 𝜓2(𝑡)) such that 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡).

Following a similar reasoning as in Section 3.1, let 𝐴(𝑥, 𝑦, 𝑦′) = 0 be a curve-parametrisable
AODE of order one with a rational general solution ̂𝑦. Now, ( ̂𝑦, ̂𝑦′)may be considered as a
family of points over ℱ(𝑥). Given a proper rational parametrisation 𝒫𝒞𝐴(𝑡) = (𝜓1(𝑡), 𝜓2(𝑡))
such that 𝜓1, 𝜓2 ∈ ℱ(𝑥)(𝑡). By Proposition 1, such a parametrisation always exists and can be
computed [22, Section 4]. Let 𝑢 = 𝒫−1

𝒞𝐴 ( ̂𝑦, ̂𝑦′). From the identity 𝒫𝒞𝐴(𝑢) = ( ̂𝑦, ̂𝑦′) the following
conditions for 𝑢must hold:

{
𝜓1(𝑢) = ̂𝑦
𝜓2(𝑢) = ̂𝑦′.

(10)

This shows that it is sufficient to find a suitable family of points 𝑢 such that 𝜓1(𝑢)
′ = 𝜓2(𝑢).

Expanding the left-hand side of this equation using the chain rule leads to the differential
equation

𝑢′ =
𝜓2(𝑢) −

𝜕𝜓1(ᵆ)
𝜕𝑥

𝜕𝜓1
𝜕𝑡
(𝑢)

. (11)

Again, the denominator is well-defined for a rational general solution [22, Section 5]. This
approach transforms a general (non-linear) first-order AODE into a single quasi-linear ODE,
whereas the method in Section 3.1 would give a system of two quasi-linear ODEs. However,
the system of differential equations (6) is autonomous while the ODE of Equation (11) lacks
this property in general.

Definition 10. Let 𝐴(𝑥, 𝑦, 𝑦′) = 0 be a curve-parametrisable first-order AODE and 𝒫𝒞𝐴(𝑡) =
(𝜓1(𝑡), 𝜓2(𝑡)) be a proper rational parametrisation of the associated curve with 𝜓1, 𝜓2 ∈
ℱ(𝑥)(𝑡). For this AODE, the differential equation (11) is called the associated quasi-linear
equation with respect to 𝒫𝒞𝐴. �

The associated quasi-linear equation is, like the associated planar system, constructed in such
a way that rational general solutions are preserved. The proof of the subsequent theorem is
given in Vo, Grasegger andWinkler [22, Theorem 5.3].

Theorem 4. Let𝐴(𝑥, 𝑦, 𝑦′) = 0 be a curve-parametrisable AODE of order one and𝒫𝒞𝐴 a proper
rational parametrisation of the associated curve such that 𝒫𝒞𝐴 is defined overℱ(𝑥). Then there
is a one-to-one correspondence between rational general solutions of this AODE and the rational
general solutions of the associated quasi-linear equation with respect to 𝒫𝒞𝐴.

By construction, a rational general solution 𝑢̂ of the associated quasi-linear equation with
respect to 𝒫𝒞𝐴(𝑡) = (𝜓1(𝑡), 𝜓2(𝑡)) constitutes a rational general solution ̂𝑦 = 𝜓1(𝑢̂) of the
original AODE. Restricting the class of solutions to rational general solutions forces the
associated quasi-linear equation to be of a special form. Behloul and Cheng [1] showed that
a quasi-linear ODE which is neither linear nor a Riccati equation can have finitely many
rational solutions at most. Since a rational general solution can be seen as an infinite family
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of rational solutions, a necessary condition that Equation (11) has a suitable solution is that
it is of the form

𝑢′ = 𝐴0 + 𝐴1𝑢 + 𝐴2𝑢2, (12)

for some 𝐴0, 𝐴1, 𝐴2 ∈ ℱ(𝑥). Thus, a characterisation for rational general solutions of the
associated quasi-linear equation (11) is as follows: It is a solution 𝑢̂ such that the differential
equation is of the form (12) and 𝑢̂ satisfies Lemma 1 for the corresponding AODE7, viz. the
AODE obtained by clearing the denominators of 𝐴0, 𝐴1 and 𝐴2 followed by removing the
content.

The notion of rational general solution is quite special for differential equations of the form
(12). If such an object exists, then it can be chosen from a purely transcendental constant
extension of ℱ(𝑥). Vo, Grasegger andWinkler [22] call such solutions strong rational general
solutions.

Definition 11. Given a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0with a rational general solution ̂𝑦. If
̂𝑦 ∈ ℱ(𝑥)(𝐶), where 𝐶 is a transcendental constant over (ℱ(𝑥), d/d𝑥), then ̂𝑦 is called a strong
rational general solution. Let 𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 denote the class of all first-order AODEs which possess
a strong rational general solution. �

In other words, strong rational general solutions are those rational general solutions where
the constant coefficients appear rationally. This is not the case in general. Example 4 of
Section 4 describes a first-order AODE with a rational general solution whose transcendental
constant coefficients appear algebraically. The existence of (strong) rational general solutions
of the associated quasi-linear equation can be decided and—in the positive case—computed
effectively. For linear differential equations the solution is straightforward. In Kovacic [13,
Section 3] a complete algorithm for computing all rational solutions of a Riccati equation is
given. This algorithm can be modified, cf. Chen and Ma [4], to look for general solutions
only. Notice that this makes the approach by curve parametrisation a full decision algorithm
and every first-order AODE which has a strong rational general solution can be decided with
this algorithm [22, Theorem 6.1].

4 Comparison of the methods

The aim of this section is to discuss connections between the surface and curve parametrisa-
tion method of Section 3 and to relate the classes 𝐀(𝑆𝑃)𝑂𝐷𝐸, 𝐀

(𝐶𝑃)
𝑂𝐷𝐸, 𝐀

(𝑆𝑅𝐺𝑆)
𝑂𝐷𝐸 and 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 . A main

tool for this investigation is the following lemma.

Lemma 2. Let 𝔽 ≔ ℱ(𝑥) and consider an irreducible polynomial 𝑃 ∈ ℱ[𝑥, 𝑦, 𝑧] such that
𝑃 is not an element of the base field in the polynomial ring 𝔽[𝑦, 𝑧]. Define the algebraic sets
𝒮𝑃 ⊆ 𝔸3(ℱ) and 𝒞𝑃 ⊆ 𝔸2(𝔽) as follows:

𝒮𝑃 ≔ { (𝑥, 𝑦, 𝑧) ∈ 𝔸3(ℱ) || 𝑃(𝑥, 𝑦, 𝑧) = 0 } and 𝒞𝑃 ≔ { (𝑦, 𝑧) ∈ 𝔸2(𝔽) || 𝑃(𝑦, 𝑧) = 0 },

7Cf. Equation (5) at the beginning of Section 3.
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where in the latter case, 𝑃 is interpreted8 as an element of 𝔽[𝑦, 𝑧]. If 𝒞𝑃 is rational, then 𝒮𝑃
is rational and there exist 𝜒1, 𝜒2 ∈ 𝔽(𝑡) such that 𝒫𝒞𝑃(𝑡) = (𝜒1(𝑡), 𝜒2(𝑡)) is a proper rational
parametrisation of 𝒞𝑃 and, by interpreting 𝜒1, 𝜒2 ∈ ℱ(𝑥, 𝑡), 𝒫𝒮𝑃(𝑥, 𝑡) = (𝑥, 𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) is
a proper rational parametrisation of 𝒮𝑃.

Proof. Assume that 𝒞𝑃 is a rational curve. By Proposition 1 there exists a proper rational
parametrisation𝒫𝒞𝑃(𝑡) = (𝜒1(𝑡), 𝜒2(𝑡))with 𝜒1, 𝜒2 ∈ 𝔽(𝑡). Theorem 2 asserts that the function
field 𝔽(𝒞𝑃) is isomorphic to 𝔽(𝑡) over 𝔽. By the remark after the theorem this isomorphism is
realised via the following pullback map:

𝒫∗
𝒞𝑃 ∶ 𝔽(𝒞𝑃) → 𝔽(𝑡),

𝑓 ↦ 𝑓 ∘ 𝒫𝒞𝑃.

Notice that the parametrisation can not be constant, i.e. not both 𝜒1, 𝜒2 ∈ 𝔽, otherwise 𝒫∗
𝒞𝑃

could not be an isomorphism. Consider now the function field 𝔽(𝒞𝑃) of the curve over the
algebraically non-closed field 𝔽. Obviously, this is a subfield of the domain of 𝒫∗

𝒞𝑃 and by
restricting the pullback to this subfield one obtains a map

𝒫∗
𝒞𝑃
||𝔽(𝒞𝑃)

∶ 𝔽(𝒞𝑃) → 𝔽(𝑡).

The restriction of the codomain is only possible since the parametrisation 𝒫𝒞𝑃 is defined
over 𝔽. Evidently, the image of the restricted pullback map is an embedding of 𝔽(𝒞𝑃) in
𝔽(𝑡) and—since the parametrisation is non-constant—the field 𝔽 is a proper subfield of
this image. By invoking Lüroth’s theorem [23, Chapter 5, Theorem 7.2], the map 𝒫∗

𝒞𝑃
||𝔽(𝒞𝑃)

establishes an isomorphism 𝔽(𝒞𝑃) ≅ 𝔽(𝑡). If this would not be the case, i.e. the image of the
restricted pullback map is merely an isomorphic proper subfield of 𝔽(𝑡), then the embedding
of 𝔽(𝒞𝑃) in 𝔽(𝑡) is an extension of 𝔽 generated by a necessarily non-linear rational function.
Hence 𝒫𝒞𝑃 could be reparametrised by this generator, contradicting the properness of this
parametrisation [20, Lemma 4.17].

Now recall the structure of the function field of an algebraic variety defined by an irreducible
polynomial:

𝔽(𝒞𝑃) ≅ { 𝐹𝐺
||| 𝐹, 𝐺 ∈ 𝔽(𝑦, 𝑧) and 𝑃 ∤ 𝐺} /∼, (13)

where 𝐹1/𝐺1 ∼ 𝐹2/𝐺2 ∶⇔ 𝑃 ∣ (𝐹1𝐺2 − 𝐹2𝐺1). The denominators of the coefficients of 𝐹 and 𝐺 in
Equation (13) can be cleared and a representative of each fraction 𝐹/𝐺 can be chosen such
that 𝐹,𝐺 ∈ ℱ[𝑥][𝑦, 𝑧] ≅ ℱ[𝑥, 𝑦, 𝑧]. Since 𝒞𝑃 and 𝒮𝑃 are defined by the very same polynomial
𝑃 ∈ ℱ[𝑥, 𝑦, 𝑧] this shows that ℱ(𝒮𝑃) ≅ 𝔽(𝒞𝑃) and hence

ℱ(𝒮𝑃) ≅ 𝔽(𝒞𝑃) ≅ 𝔽(𝑡) ≅ ℱ(𝑥, 𝑡).

The first and last isomorphism is canonical, i.e. elements in one field have an interpretation
as elements of the other, and the middle isomorphism is realised via the pullback map of the

8Actually, in both cases the polynomial is interpreted as a regular function on the corresponding affine space.
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curve parametrisation. So clearly, ℱ(𝒮𝑃) is isomorphic to ℱ(𝑥, 𝑡) over ℱ and by Theorem 2
the surface 𝒮𝑃 is rational.

To construct a proper rational parametrisation of 𝒮𝑃 let

𝒫∗
𝒮𝑃 ∶ ℱ(𝒮𝑃)

interpret
−−−−−→ 𝔽(𝒞𝑃)

𝒫∗𝒞𝑃
||𝔽(𝒞𝑃)−−−−−−→ 𝔽(𝑡)

interpret
−−−−−→ ℱ(𝑥, 𝑡)

be the previously describedℱ-isomorphismℱ(𝒮𝑃) ≅ ℱ(𝑥, 𝑡). By the remark after Theorem 2,
the parametrisation may be obtained by applying 𝒫∗

𝒮𝑃 on the surface’s coordinate functions
and interpreting the result as a function from 𝔸2(ℱ) to 𝒮𝑃. By an abuse of notation, let
𝑥, 𝑦, 𝑧 ∈ ℱ(𝒮𝑃) also denote the coordinate functions9 of 𝒮𝑃. Then

𝒫𝒮𝑃(𝑥, 𝑡) = (𝒫∗
𝒮𝑃(𝑥)(𝑥, 𝑡), 𝒫

∗
𝒮𝑃(𝑦)(𝑥, 𝑡), 𝒫

∗
𝒮𝑃(𝑧)(𝑥, 𝑡))

is a proper rational parametrisation of 𝒮𝑃. The coordinate function 𝑥 is a constant function as
an element of 𝔽(𝒞𝑃) and hence is not changed by 𝒫∗

𝒞𝑃
||𝔽(𝒞𝑃)

. On the other hand, the coordinate
functions 𝑦 and 𝑧 of the surface correspond to the coordinate functions of 𝒞𝑃 in 𝔽(𝒞𝑃). By
the definition of the parametrisation 𝑦 ∘ 𝒫𝒞𝑃 = 𝜒1 and 𝑧 ∘ 𝒫𝒞𝑃 = 𝜒2. Under the canonical
identification of 𝔽(𝑡) with ℱ(𝑥, 𝑡) and interpreting elements of the latter space as functions
on 𝔸2(ℱ) it is found that 𝒫𝒮𝑃(𝑥, 𝑡) = (𝑥(𝑥, 𝑡), 𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)).

Remark 1. Notice that the converse is not true. A rational surface defined by an irreducible
polynomial 𝑃 ∈ ℱ[𝑥, 𝑦, 𝑧] ⧵ ℱ[𝑥] does not imply that the corresponding curve is rational. A
counterexample is readily given: Consider the polynomial 𝑃 = 𝑥 − 𝑦2 − 𝑧3 ∈ ℚ[𝑥, 𝑦, 𝑧]. The
surface 𝒮𝑃 has the proper rational parametrisation

𝒫𝒮𝑃 ∶ 𝔸
2(ℚ) → 𝒮𝑃,

(𝑠, 𝑡) ↦ (𝑠2 + 𝑡3, 𝑠, 𝑡).

On the other hand, the curve 𝒞𝑃 has genus one and can not be rational by Theorem 1, thus.

Remark 2. However, if the surface 𝒮𝑃 is rational and admits a proper rational parametrisation
of the special form 𝒫𝒮𝑃(𝑠, 𝑡) = (𝑠, 𝜒1(𝑠, 𝑡), 𝜒2(𝑠, 𝑡)), where 𝜒1, 𝜒2 ∈ ℱ(𝑠, 𝑡), then 𝒞𝑃 is rational
and 𝒫𝒞𝑃(𝑡) = (𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) is a proper rational parametrisation of 𝒞𝑃.

In order to see this, consider the irreducible polynomial 𝑃 ∈ ℱ[𝑥, 𝑦, 𝑧] ⧵ ℱ[𝑥] and assume
for the moment that the curve 𝒞𝑃 is irreducible. By renaming the parameter 𝑠 of the surface
parametrisation 𝒫𝒮𝑃 to 𝑥 it follows that 𝑃(𝑥, 𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) = 0. At least one of the rational
functions 𝜒1 or 𝜒2 must depend on the parameter 𝑡, otherwise 𝒫𝒮𝑃 could not parametrise a
surface, hence (𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) is a pair of non-constant rational functions vanishing on the
9These are the projections on the first, second and third component of the points of 𝒮𝑃. In other words,
𝑥 ∶ 𝒮𝑃 → ℱ, (𝑥, 𝑦, 𝑧) ↦ 𝑥 and similarly for the other two coordinate functions. From a modern viewpoint,
one may consider 𝑥, 𝑦, 𝑧 as ℱ-algebra generators of the fraction field of the integral domain 𝑅, where 𝑅 is
the quotient ring of ℱ[𝑥, 𝑦, 𝑧]modulo the ideal generated by 𝑃.

13



defining polynomial of 𝒞𝑃. By [20, Theorem 4.7] it follows that 𝒫𝒞𝑃(𝑡) = (𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) is
a rational parametrisation of 𝒞𝑃. Furthermore, 𝒫𝒞𝑃 must be proper. The pullback mapping
𝒫∗
𝒮𝑃 ∶ ℱ(𝒮𝑃) → ℱ(𝑥, 𝑡) yields the identity function on the first parameter when applied to the
coordinate function 𝑥 of the surface 𝒮𝑃. Consequently, 𝒫∗

𝒮𝑃 defines an ℱ(𝑥)-isomorphism
to ℱ(𝑥)(𝑡) ≅ ℱ(𝑥, 𝑡). By a similar reasoning as in the proof of Lemma 2, if 𝒫𝒞𝑃 was not
proper, then there exists a reparametrisation by a non-linear rational function. In such a case,
however, the pullback 𝒫∗

𝒮𝑃 can not possibly give the full isomorphism which contradicts the
assumed properness of 𝒮𝑃.

Now to the irreducibility of 𝒞𝑃. In Vo, Grasegger andWinkler [22, Theorem 3.1] is has been
shown that an AODE is curve-parametrisable if it has a strong rational general solution
̂𝑦 ∈ ℱ(𝑥)(𝐶), where 𝐶 is a transcendental constant. In particular, they proved that in this
case the defining polynomial 𝐴 of the AODE is irreducible as an element of ℱ(𝑥)[𝑦, 𝑦′]. For
this they constructed the ideal

𝐼 = {𝐹 ∈ ℱ(𝑥)[𝑦, 𝑧] | 𝐹(𝑥, ̂𝑦(𝑥, 𝐶), ̂𝑦′(𝑥, 𝐶)) = 0}

and proved that this is a principal prime ideal containing 𝐴 as an irreducible element. By
retracing the steps of their proof, it can be shown that 𝑃 is irreducible as an element of the
principal prime ideal

𝐽 = {𝐹 ∈ ℱ(𝑥)[𝑦, 𝑧] | 𝐹(𝑥, 𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)) = 0},

which completes the argument. In combination with Lemma 2, this last remark shows that
curve-parametrisable AODEs are precisely those AODEs where the associated surface is a
pencil of rational curves with a section along the 𝑥-axis.

4.1 Comparison of the associated differential equations

An interesting consequence of Lemma 2 is that it facilitates a direct comparison of the
associated planar system and the associated quasi-linear equation with respect to a common
parametrisation. Given a first-order AODE 𝐴(𝑥, 𝑦, 𝑦′) = 0 such that the associated curve
𝒞𝐴 is rational. Let 𝒫𝒞𝐴(𝑡) = (𝜒1(𝑡), 𝜒2(𝑡)) be such that 𝜒1, 𝜒2 ∈ ℱ(𝑥)(𝑡) is a proper rational
parametrisation of 𝒞𝐴. Recall that the associated quasi-linear equation with respect to 𝒫𝒞𝐴 is
of the form

𝑢′ =
𝜒2(𝑢) −

𝜕𝜒1(ᵆ)
𝜕𝑥

𝜕𝜒1

𝜕𝑡
(𝑢)

. (14)

By Lemma 2 the associated surface 𝒮𝐴 is rational and possesses the proper rational paramet-
risation 𝒫𝒮𝐴(𝑥, 𝑡) = (𝑥, 𝜒1(𝑥, 𝑡), 𝜒2(𝑥, 𝑡)). In order to use the same notation as in Section 3.1,
the parameter 𝑥 is renamed to 𝑠. Due to the special form of this parametrisation the associated
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planar system with respect to 𝒫𝒮𝐴 simplifies to

⎧⎪
⎨⎪
⎩

𝑠′ = 1

𝑡′ =
𝜒2(𝑠, 𝑡) −

𝜕𝜒1(𝑠,𝑡)
𝜕𝑠

𝜕𝜒1(𝑠,𝑡)
𝜕𝑡

.
(15)

Solutions of autonomous planar systems behave nicely under translation by constants. If
( ̂𝑠(𝑥), ̂𝑡(𝑥)) is a rational general solution of the associated planar system, then ( ̂𝑠(𝑥 + 𝐶), ̂𝑡(𝑥 +
𝐶)) is another expression for the same rational general solution [17]. The shift 𝑥 − 𝐶 in
Equation (7) is precisely such a shift by a constant. The general solution of the first equation
of the system (15) obviously is ̂𝑠(𝑥) = 𝑥 + 𝐶. Aiming for rational general solutions, if the
planar system has such a solution ( ̂𝑠(𝑥), ̂𝑡(𝑥)) with ̂𝑠(𝑥) = 𝑥 + 𝐶, then ( ̂𝑠(𝑥 − 𝐶), ̂𝑡(𝑥 − 𝐶))
is another expression for the same solution by the previous remark. In other words, by
substitution of ̂𝑠(𝑥 − 𝐶) = 𝑥 for 𝑠 in the second equation of the system (15) one obtains a
single quasi-linear ODE

𝑡′ =
𝜒2(𝑥, 𝑡) −

𝜕𝜒1(𝑥,𝑡)
𝜕𝑥

𝜕𝜒1(𝑥,𝑡)
𝜕𝑡

. (16)

Note that the equivalence of the system (15) to the quasi-linear equation (16) can be shown
with classical methods as well [14, Section 5.1]. Comparing Equation (14) and Equation (16)
shows that they denote the very same quasi-linear ODE. This shows that the associated planar
system reduces to the associated quasi-linear equation if a surface parametrisation obtained
from a parametrisation of the associated curve is used. The observation that the associated
planar system reduces to a single quasi-linear equation—given that the first component of
the surface parametrisation coincides with the corresponding coordinate function—has been
made in Ngô, Sendra and Winkler [14]. They also argued that a proper rational paramet-
risation of the associated curve defined over ℱ(𝑥) must translate to a parametrisation of
the associated surface as in Lemma 2. AODEs with such a property are called differential
equations of pencil type in their terminology [14, Section 5.1].

A rational general solution 𝑢̂ of the quasi-linear equation (14) extends to a rational general
solution ( ̂𝑠(𝑥) = 𝑥, ̂𝑡(𝑥) = 𝑢̂) of the planar system (15), cf. [15, Lemma 3.13]. By the remark
after Theorem 4 in Section 3.2, the approach by curve parametrisation generates the rational
general solution of the original AODE ̂𝑦 = 𝜒1(𝑢̂) from the associated solution 𝑢̂. Analogously,
the surface parametrisation method constructs the general solution ̂𝑦 = 𝜒1( ̂𝑠(𝑥 − 𝐶), ̂𝑡(𝑥 −
𝐶)) = 𝜒1(𝑥, 𝑢̂), where 𝐶 = 0 since the first component of the surface parametrisation is just
𝑥 and ̂𝑠(𝑥) = 𝑥, cf. Equation (7) in Section 3.1. Therefore, both methods generate the same
rational general solution of the original AODE from a common solution of the associated
differential equation(s).

Example (Clairaut’s equation). The subsequent ODE is known as Clairaut’s equation:

𝑦(𝑥) = 𝑥 d
d𝑥𝑦(𝑥) + 𝑓( dd𝑥𝑦(𝑥)),
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where 𝑓 is a continuously differentiable function. A general solution of this ODE can be found
with the introduced methods if 𝑓 is a polynomial function10. Consider the defining polynomial

𝐴 = 𝑦 − 𝑥𝑦′ − 𝑓(𝑦′) ∈ ℂ[𝑥, 𝑦, 𝑦′],

such that 𝑓(𝑦′) ∈ ℂ[𝑦′]. In this case, Clairaut’s equation is curve-parametrisable and has the
proper rational parametrisation 𝒫𝒞𝐴(𝑡) = (𝜒1(𝑡), 𝜒2(𝑡)) with 𝜒1 = 𝑥 𝑡 + 𝑓(𝑡) and 𝜒2 = 𝑡. The
associated quasi-linear equation has the form

𝑢′ =
𝜒2(𝑢) −

𝜕𝜒1(ᵆ)
𝜕𝑥

𝜕𝜒1

𝜕𝑡
(𝑢)

= 𝑢 − 𝑢

𝑥 + 𝜕𝑓
𝜕𝑡
(𝑢)

= 0.

Obviously, the general solution of this equation is 𝑢̂ = 𝐶. This solution is transformed back to
the general solution ̂𝑦 = 𝜒1(𝑢̂) = 𝐶𝑥 + 𝑓(𝐶) of Clairaut’s equation.

Alternatively, this AODE can be solved with the surface parametrisation approach. By Lemma 2,
Clairaut’s equation is surface-parametrisable and has—after renaming the parameter 𝑥 to
𝑠—the proper rational parametrisation 𝒫𝒮𝐴(𝑠, 𝑡) = (𝜒0(𝑠, 𝑡), 𝜒1(𝑠, 𝑡), 𝜒2(𝑠, 𝑡)) with 𝜒0 = 𝑠, 𝜒1 =
𝑠 𝑡 + 𝑓(𝑡) and 𝜒2 = 𝑡. Since 𝜕𝜒0/𝜕𝑠 = 1 and 𝜕𝜒0/𝜕𝑡 = 0 the associated planar system is

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑠′ =
−𝜕𝜒1(𝑠,𝑡)

𝜕𝑡

−𝜕𝜒1(𝑠,𝑡)
𝜕𝑡

= 1

𝑡′ =
𝜒2(𝑠, 𝑡) −

𝜕𝜒1(𝑠,𝑡)
𝜕𝑠

𝜕𝜒1(𝑠,𝑡)
𝜕𝑡

= 𝑡 − 𝑡

𝑠 + 𝜕𝑓(𝑡)
𝜕𝑡

= 0.

(17)

By the results of this section, ( ̂𝑠(𝑥) = 𝑥, ̂𝑡(𝑥) = 𝐶) is a rational general solution of this system
from which the general solution ̂𝑦 = 𝜒1(𝑥, 𝑢̂) = 𝐶𝑥 + 𝑓(𝐶) of Clairaut’s equation is generated.

Remark 3. If the system (17) is solved without the reduction to a single quasi-linear equation,
then a rational general solution has the form ̂𝑠(𝑥) = 𝑥 + 𝐶1 and ̂𝑡(𝑥) = 𝐶2, where 𝐶1, 𝐶2 are
two transcendental constants. This associated solution is transformed back to the subsequent
general solution, cf. Section 3.1:

̂𝑦 = 𝜒1( ̂𝑠(𝑥 − 𝐶1), ̂𝑡(𝑥 − 𝐶1)) = 𝜒1(𝑥, 𝐶2) = 𝐶2 𝑥 + 𝑓(𝐶2),

which is identical to the previous solution.

10Actually,𝑓 could be a rational function as well. In this case, one has to slightlymodify the equation to constitute
an AODE. However, the rational parametrisation will be the same.
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4.2 Relations between subclasses of first-order AODEs

The following propositions relate the introduced classes of first-order AODEs. Recall that
𝐀𝑂𝐷𝐸 denotes the class of all AODEs of order one,𝐀

(𝑆𝑃)
𝑂𝐷𝐸 and𝐀

(𝐶𝑃)
𝑂𝐷𝐸 stands for the subclass of

surface-parametrisable and curve-parametrisable AODEs, respectively. Finally, 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 and
𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 refers to the subclass of AODEs with a rational general and strong rational general
solution, respectively.

Proposition 2. Curve-parametrisable AODEs of order one are surface-parametrisable and
the inclusion is proper. In addition, not every first-order AODE with a rational general solution
is surface-parametrisable. Stated in terms of the introduced notation:

𝐀(𝐶𝑃)𝑂𝐷𝐸 ⊊ 𝐀(𝑆𝑃)𝑂𝐷𝐸 and 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 ⧵ 𝐀(𝑆𝑃)𝑂𝐷𝐸 ≠ ∅.

Proof. This is a direct consequence of Lemma 2, Example 1 and Example 4.

Proposition 3. The class of first-order AODEs with a strong rational general solution are
precisely those AODEs which have a rational general solution and are curve-parametrisable:

𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 = 𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 ∩ 𝐀(𝐶𝑃)𝑂𝐷𝐸.

Proof. This follows from Vo, Grasegger andWinkler [22, Theorem 5.4(i), Corollary 5.5].

The subsequent examples of first-order AODEs are used in a graphical depiction of the
previous propositions given at Figure 1. Some of these examples are quite trivial, listed solely
for the sake of completeness. Note that the extend of the regions in Figure 1 do not in any
sense correspond to a mathematical measure of the sets. A statistical investigation for the
class of curve-parametrisable AODEs is given in Grasegger, Vo andWinkler [9].

Example 1. The AODE 𝑦′2−𝑦3−𝑥 = 0 is surface-parametrisable, but does not have a rational
general solution. Furthermore, its associated curve is not rational as the latter is of genus one.

It is easy to see that the associated surface of the AODE in Example 1 has the proper rational
parametrisation

𝒫𝒮𝐸𝑥.1(𝑠, 𝑡) = (𝑡2 − 𝑠3, 𝑠, 𝑡)

which yields the following associated planar system

{
𝑠′ = 𝑡

𝑡′ = 3𝑠2𝑡 + 1
2𝑡 .
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From this special planar system one can derive the single quasi-linear differential equation
[16, Section 4.3 (Equations solvable for 𝑥)]

𝑡′ = 3𝑥2𝑡 + 1
2𝑡2

which is neither a linear nor a Riccati equation and hence can not have a rational general
solution [22, Section 5].

Example 2. The AODE 𝑦′ − 𝑦 = 0 is both surface-parametrisable and curve-parametrisable.
A proper rational parametrisation is easily determined since the associated curve/surface is a
line/plane, respectively. It should be clear that the only rational function which satisfies this
autonomous AODE is the trivial solution. Consequently, such an AODE can not have a rational
general solution.

Example 3. Consider the AODE 𝑦′ − 𝑦2 = 0 which is surface/curve-parametrisable and has
a rational general solution. Proper rational parametrisations are found easily and a rational
general solution is given by ̂𝑦 = 1/(𝐶 − 𝑥).

Example 4. The subsequent AODE is neither curve-parametrisable nor surface-parametrisable.
This follows from the fact that the arithmetic genus of the associated surface is negative and the
genus of the associated curve is one:

𝑥2𝑦′2 − 2𝑥𝑦𝑦′ − 𝑦′3 + 𝑦2 − 2 = 0.

However, this AODE has the rational general solution ̂𝑦 = 𝐶𝑥 + √𝐶3 + 2.

Example 5. Finally, consider the AODE 𝑦′2 + 𝑦3 + 1 = 0 which is not parametrisable as curve
or as surface and does not have a rational general solution. Again, the arithmetic genus of the
associated surface is negative and the genus of the associated curve is one. Since for autonomous
first-order AODEs the notion of rational general solution and strong rational general solution
coincides, yet this AODE is not curve-parametrisable, there can not exist a rational general
solution [22]. Alternatively, this follows from the results in Feng and Gao [7] and the fact that
the AODE is not parametrisable as a plane curve over the field of rational numbers.

5 Conclusion and further questions

In this paper, two recent algobro-geometric methods for computing rational general solu-
tions of first-order AODEs have been outlined and their associated (system of) differential
equation(s) for a common rational parametrisation were compared. In addition, certain
classes of first-order AODEs have been related. A graphical depiction of these relations
is provided by Figure 1. One question which this diagram leaves open is whether there
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are surface-parametrisable AODEs which possess a rational general solution, but are not
curve-parametrisable. In other words, is the following class

(𝐀(𝑆𝑃)𝑂𝐷𝐸 ∩ 𝐀
(𝑅𝐺𝑆)
𝑂𝐷𝐸 ) ⧵ 𝐀(𝐶𝑃)𝑂𝐷𝐸 = (𝐀(𝑆𝑃)𝑂𝐷𝐸 ⧵ 𝐀

(𝐶𝑃)
𝑂𝐷𝐸) ∩ 𝐀

(𝑅𝐺𝑆)
𝑂𝐷𝐸 (18)

empty or not? By Proposition 3 it is clear that such AODEs can not have a strong rational
general solution. Therefore, an element from the class (18) would have to be parametrisable
as a rational surface, but the transcendental constants of any rational general solution do not
form a purely transcendental extension of ℱ(𝑥), cf. Definition 11 in Section 3.2. An answer
to this would settle the question whether the method via surface parametrisation is more
general than the method by curve parametrisation.

𝐀𝑂𝐷𝐸

𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸

𝐀(𝐶𝑃)𝑂𝐷𝐸

𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸

𝐀(𝑆𝑃)𝑂𝐷𝐸

Example 1 Example 2 Example 3 Example 4

Example 5

Figure 1: Relations between the subsequent classes of first-order AODEs:

𝐀𝑂𝐷𝐸 ... the class of first-order AODEs

𝐀(𝑅𝐺𝑆)𝑂𝐷𝐸 ... the class of first-order AODEs with a rational general solution

𝐀(𝑆𝑅𝐺𝑆)𝑂𝐷𝐸 ... the class of first-order AODEs with a strong rational general solution

𝐀(𝐶𝑃)𝑂𝐷𝐸 ... the class of first-order AODEs whose associated curve is parametrisable

𝐀(𝑆𝑃)𝑂𝐷𝐸 ... the class of first-order AODEs whose associated surface is parametrisable
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